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Glasses have a large excess of low-frequency vibrational modes in comparison with most crystalline solids.
We show that such a feature is a necessary consequence of the weak connectivity of the solid, and that the
frequency of modes in excess is very sensitive to the pressure. We analyze, in particular, two systems whose
density D��� of vibrational modes of angular frequency � display scaling behaviors with the packing fraction:
�i� simulations of jammed packings of particles interacting through finite-range, purely repulsive potentials,
comprised of weakly compressed spheres at zero temperature and �ii� a system with the same network of
contacts, but where the force between any particles in contact �and therefore the total pressure� is set to zero.
We account in the two cases for the observed �a� convergence of D��� toward a nonzero constant as �→0, �b�
appearance of a low-frequency cutoff �*, and �c� power-law increase of �* with compression. Differences
between these two systems occur at a lower frequency. The density of states of the modified system displays
an abrupt plateau that appears at �*, below which we expect the system to behave as a normal, continuous,
elastic body. In the unmodified system, the pressure lowers the frequency of the modes in excess. The require-
ment of stability despite the destabilizing effect of pressure yields a lower bound on the number of extra
contact per particle �z :�z� p1/2, which generalizes the Maxwell criterion for rigidity when pressure is present.
This scaling behavior is observed in the simulations. We finally discuss how the cooling procedure can affect
the microscopic structure and the density of normal modes.
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I. INTRODUCTION

The responses to thermal or mechanical excitations and
the transport properties of a solid depend on its low-
frequency vibrations. In a continuous elastic body, transla-
tional invariance requires that the vibrational modes, or nor-
mal modes, are acoustic modes. This leads, notably, to the
Debye behavior of the density of vibrational modes D���: in
three dimensions, D�����2 �1�. In amorphous solids struc-
tural disorder is present and this description breaks down at
intermediate frequencies and length scales. In glasses, there
is a large excess of low-frequency vibrations observed in
neutron scattering experiments. This excess corresponds to a
broad maximum in D��� /�2, called the “boson peak,” which
appears at frequencies on the order of a terahertz �2�, that is
typically between one-hundredth and one-tenth of the Debye
frequency. Above the boson peak frequency, transport prop-
erties �3� are strongly affected, as in silica where the thermal
conductivity is several orders of magnitude smaller than in a
crystal of identical composition �4�. Furthermore, amorphous
solids also exhibit force inhomogeneities that are common to
granular materials �5� and glasses �6�. Thus, the resulting
force propagation due to a localized perturbation differs con-
siderably from the predictions of the continuum elasticity
theory at short length scales. Recent simulations reported
that this difference appears below a characteristic length
scale which is directly related to the frequency of the boson
peak �6�. Thus the excess modes play an important role in

several anomalous properties of amorphous solids. It was
recently proposed that they also govern the physics at the
liquid-glass transition �7�.

Despite their ubiquity, there is no accepted explanation of
the underlying cause of these excess vibrational modes in
glasses. A dramatic illustration of this excess was found in
recent computer simulations of soft spheres with repulsive,
finite-range potentials near the jamming transition �8�. At this
transition an amorphous solid loses both its bulk and shear
moduli and becomes a liquid �9�. In a recent paper �10� we
showed how to calculate the density of states for weakly
connected amorphous solids, such as those near jamming,
and showed that an excess density of vibrational states is a
necessary feature of such systems. In this paper we use the
method of �10� to predict further consequences of compres-
sion. In particular, we explain why the coordination z must
increase in a nonanalytic way with applied pressure, as ob-
served in the simulations �11,8,5�.

Because there are no attractive forces and the temperature
is zero in the soft-sphere simulations of O’Hern and co-
workers �5,8,12�, the pressure p=0 at the packing fraction at
the jamming transition, �c. In three dimensions for monodis-
perse spheres, �c�0.64. The average number of contacting
neighbors per particle is z, and the elastic moduli scale has
functions of p. These simulations also reveal unexpected fea-
tures in the density of vibrational modes, D���: �a� As shown
in Fig. 1, when the system is at the limit of marginal stability,
as p→0, D��� has a plateau extending down to zero fre-
quency with no sign of the standard �2 density of states
normally expected for a three-dimensional solid. �b� The pla-
teau is progressively eroded at frequencies below a charac-
teristic frequency �*, that increases with the pressure p �see*Electronic address: matthieu.wyart@m4x.org
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Fig. 4�. �c� The value of D��� of the plateau is unaffected by
this compression. �d� At frequencies much lower than
�* , D��� still increases much faster with � than the qua-
dratic Debye dependence. Similar behavior was also recently
seen in models of tetrahedral covalent glasses �13�. An ear-
lier simulation of a Lennard-Jones glass had indicated that
D��� increases at low frequencies when the coordination
number z is lowered �14�. In the following we aim to relate
the density of vibrational modes of weakly connected amor-
phous solids such as an assembly of finite-range, repulsive
particles to their microscopic structure. We start by briefly
reviewing the results of �10� where the scaling properties of
the density of states were derived. Then we use these results
to compute the effect of applied stress. We show that it leads
to a nontrivial constraint on the geometry of the contact net-
work near the jamming threshold. The scaling behavior of
the soft spheres near jamming furnish a stringent test to our
predictions.

At the center of our argument lies the concept of soft
modes, or floppy modes. These are collective modes that con-
serve the distance, at first order, between any particles in
contact. They have been discussed in relation to various
weakly connected networks such as covalent glasses �15,16�,
Alexander’s models of soft solids �17�, models of static
forces in granular packs �18,19�, and rigidity percolation
models, see, e.g., �20�. As we shall discuss below, they are
present when a system has too low a coordination number.
As a consequence, as Maxwell has shown �21�, a system
with a low average coordination number z has some soft
modes and is therefore not rigid. There is a threshold value zc
where a system can become stable, such a state is called
isostatic. As we shall discuss, this is the case at the jamming
transition, if rattlers �particles with no contacts� are excluded.
At this point there are no zero-frequency modes except for
the trivial translation modes of the system as a whole. How-
ever, if any contacts were to be removed, the frequency of
one mode would go to zero, that is, one soft mode would

appear. As we argued in �10�, this idea can be used to show
that isostatic states have a constant density of states in any
dimensions. When z�zc, the system still behaves as an iso-
static medium at a short enough length scale, which leads to
the persistence of a plateau in the density of states at inter-
mediate frequency.

The second concept we use is at the heart of Alexander’s
discussion of soft solids �16�. In continuum elasticity the
expansion of the energy for small displacements contains a
term proportional to the applied stress. It is responsible for
the vibrations of strings and drumheads and also for inelastic
instabilities such as the buckling of thin rods. Alexander
pointed out that this term also has a strong effect at a micro-
scopic level in weakly connected solids. For example, it con-
fers rigidity to gels, even though these do not satisfy the
Maxwell criterion for rigidity. We will show that while this
term does not greatly affect the acoustic modes, it neverthe-
less strongly affects the soft modes. In a repulsive system of
spherical particles it lowers their frequency. We argue that
this can dramatically change the density of states at low fre-
quency, as confirmed by a comparison of simulations where
the force in any contact is present, or set to zero. We show
that these considerations also lead to a relation between the
excess connectivity �z�z−zc and the pressure p.

The paper is organized as follows. In the next section, we
write the expansion of the elastic energy that we use to de-
rive the soft-modes equation. We then define and discuss the
isostatic case, and the nature of the soft modes that appear
when contacts are removed in such a system. In the third part
we compute the density of states when the effect of the ap-
plied stress on the vibrations is neglected. This approxima-
tion corresponds to a real physical system: a network of re-
laxed springs. We use the soft modes in a variational
argument to show that an isostatic state has a constant den-
sity of vibrational modes. We extend this argument to include
the case where the coordination number increases above zc,
as is the case of the soft-sphere system under isotropic com-
pression. We show that such a system behaves as an isostatic
one for length scales smaller than l*��z−1. This leads to a
plateau in the density of states for frequency higher than
�*��z. At lower frequencies we expect the system to be-
have as a continuous medium with a Debye regime, which is
consistent with our simulations. In the fourth part we study
the effect of an applied pressure on D���. We show that
although it does not affect the acoustic modes, it lowers the
frequency of the soft modes. We give a simple scaling argu-
ment to evaluate this effect, and discuss its implication for
the density of states. Incidentally this also furnishes an in-
equality between �z and the pressure, which is also verified
by the simulations, and which generalizes the Maxwell cri-
terion for rigidity. Finally we discuss the influence of the
cooling rate and the temperature history on the spatial struc-
ture and the density of states of the system, and conclude our
work.

II. SOFT MODES AND ISOSTATICITY

A. Energy expansion

Following �8� we consider N soft spheres packed into a
spatially periodic cubic cell of side L at volume fraction �.

FIG. 1. The density of vibrational states, D���, vs angular fre-
quency � for the simulation of Ref. �8�. 1024 spheres interacting
with repulsive harmonic potentials were compressed in a periodic
cubic box to packing fraction �, slightly above the jamming thresh-
old �c. Then the energy for arbitrary small displacements was cal-
culated and the dynamical matrix inferred. The curve labeled a is at
a relative packing fraction �−�c=0.1. Proceeding to the left the
curves have relative volume fractions 10−2 ,10−3 ,10−4 ,10−8,
respectively.
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To describe the vibrations of a system of particles, we ex-
pand the energy around equilibrium. For a central interaction
V�r� one obtains

�E = �
ij

V��rij
eq�drij + 1

2V��rij
eq�drij

2 + O�rij
3 � , �1�

where the sum is over all pairs of particles and rij
eq is the

equilibrium distance between particles i and j. In order to get
an expansion in terms of the particle displacements from

equilibrium �R� 1 ,… ,�R� N we use

drij = ��R� j − �R� i� · n� ij +
���R� j − �R� i���2

2rij
eq + O��R� 3� , �2�

where n� ij is the unit vector along the direction ij and ��R� j

−�R� i�� indicates the projection of �R� j −�R� i on the plane or-
thogonal to n� ij. When Eq. �2� is used in Eq. �1�, the linear
term in the displacement field disappears �the system is at
equilibrium� and we obtain

�E = �
ij

V��rij
eq�

���R� j − �R� i���2

2rij
eq �3�

+ 1
2V��rij

eq����R� j − �R� i� · n� ij�2 + O��R� 3� . �4�

In what follows we consider repulsive, finite-range “soft
spheres.” For the interparticle distance r��, the particles
have nonzero mutual energy and are said to be in contact.
They interact with the following potential:

V�r� =
	



	1 −

r

�




, �5�

where � is the particle diameter and 	 a characteristic energy.
For r�� the potential vanishes and particles do not interact.
Henceforth we express all distances in units of �, all energies
in units of 	, and all masses in units of the particle mass m.
In the following, we consider the harmonic case 
=2. In
Sec. V we argue that these results can be extended, for ex-
ample, to the case of Hertzian contacts �8� where 
= 5

2 . In the
harmonic case we have

�E = 	1

2�
�ij�

�rij
eq − 1�

���R� j − �R� i���2

2rij
eq 
 �6�

+
1

2�
�ij�

���R� j − �R� i� · n� ij�2 + O��R� 3� , �7�

where the sum is over all Nc contacts �ij�. It is convenient to
express Eq. �6� in matrix form, by defining the set of dis-

placements �R� 1 ,… ,�R� N as a dN-component vector 
�R�.
Then Eq. �6� can be written in the form �E= ��R
M
�R�.
The corresponding matrix M is known as the dynamical
matrix �1�. The dN eigenvectors of the dynamical matrix are
the normal modes of the particle system, and its eigenvalues
are the squared angular frequencies of these modes.

The first term in Eq. �6� is proportional to the contact
forces. In the rest of this paper we shall refer to this term as

the stress term or transverse term. Near the jamming transi-
tion rij

eq→1 so that this term becomes arbitrarily small. We
start by neglecting it, and we come back to its effects in the
last section. This approximation corresponds to a real physi-
cal system where the soft spheres are replaced by point par-
ticles interacting with relaxed springs. We now have

�E =
1

2�
�ij�

���R� j − �R� i� · n� ij�2, �8�

where M can be written as an N by the N matrix whose
elements are themselves tensors of rank d, the spatial dimen-
sion:

Mij = − ��ij�n� ij � n� ij + �i,j�
�l�

n� il � n� il, �9�

where ��ij�=1 when i and j are in contact and the sum is
taken on all the contacts l with i.

B. Soft modes

If the system has too few contacts, M has a set of modes
of vanishing restoring force and thus vanishing vibrational
frequency. These are the soft modes mentioned in the Intro-
duction. For these soft modes the energy �E of Eq. �8� must
vanish; therefore they must satisfy the Nc constraint equa-
tions:

��R� i − �R� j� . n� ij = 0 for all Nc contacts �ij� . �10�

This linear equation defines the vector space of displacement
fields that conserve the distances at first order between par-
ticles in contact. The particles can yield without restoring
force if their displacements lie in this vector space. Equation
�10� is purely geometrical and does not depend on the inter-
action potential. Each equation restricts the dN-dimensional
space of 
�R� by one dimension. In general, these dimen-
sions are independent, so that the number of independent soft
modes is dN−Nc. Of these, d�d+1� /2 modes are dictated by
the translational and rotational invariance of the energy func-
tion �E��R�. Apart from these, there are dN−Nc−d�d
+1� /2 independent internal soft modes.

C. Isostaticity

There are no internal soft modes in a rigid solid. This is
true when a system of repulsive spheres jams, when the rat-
tlers �i.e., particles without contacts� are removed. Therefore
jammed states must satisfy Nc�dN−d�d+1� /2, which is the
Maxwell criterion for rigidity. In fact at the jamming transi-
tion, if rattlers �22� are removed, one can show this inequal-
ity becomes an equality �18,19,23�, as was verified in �5�.
Such a system is called isostatic. The coordination number z
is then zc�2Nc /N→2d.

An isostatic system is marginally stable: if q contacts are
cut, a space of soft modes of dimension q appears. For our
coming argument we need to discuss the extended character
of these modes. In general, when only one contact �ij� is cut
in an isostatic system, the corresponding soft mode is not
localized near �ij�. This arises from the nonlocality of the
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isostatic condition that gives rise to the soft modes; as was
confirmed in the isostatic simulations of Ref. �18�, which
observed that the amplitudes of the soft modes were spread
over a nonzero fraction of the particles. When many contacts
are severed, the extended character of the soft modes that
appear depends on the geometry of the region being cut. If
this region is compact many of the soft modes are localized.
For example, cutting all the contacts inside a sphere totally
disconnects each particle within the sphere. Most of the soft
modes are then the individual translations of these particles
and are not extended throughout the system.

In what follows we will be particularly interested in the
case where the region of the cut is a hyperplane as illustrated
in Fig. 2. In this situation occasionally particles in the vicin-
ity of the hyperplane can be left with less than d contacts, so
that trivial localized soft modes can also appear. However we
expect that there is a nonvanishing fraction q� of the total
soft modes that are not localized near the hyperplane, but
rather extend over the entire system, like the mode shown in
Fig. 3. We shall define extended modes more precisely in the
next section.

III. D„�… IN A SYSTEM OF RELAXED SPRINGS

A. Isostatic case

1. Variational procedure

We aim to show first that the density of states of an isos-
tatic system does not vanish at zero frequency. D��� is the
total number of modes per unit volume per unit frequency
range. Therefore we have to show that there are at least on
the order of �Ld normal modes with frequencies smaller than
� for any small � in a system of linear size L. As we justify
later, if proven in a system of size L for ���L�1/L, this
property can be extended to a larger range of � independent
of L. Therefore, it is sufficient to show that they are of the

order of Ld−1 normal modes with frequency of the order of
1 /L, instead of the order of one such mode in a continuous
solid.

To do so we use a variational argument: M is a positive
symmetric matrix. Therefore if a normalized mode has an
energy �E, we know that the lowest eigenmode has a fre-
quency �0���E. Such an argument can be extended to a set
of modes �24�: if there are m orthonormal trial modes with
energy �E��t

2, then there are at least m /2 eigenmodes with
frequencies smaller than �2�t. Therefore, we are led to find
to the order of Ld−1 trial orthonormal modes with energy of
order 1 /L2.

2. Trial modes

Our procedure for identifying the lowest frequency modes
resembles that used for an ordinary solid. An isolated block
of solid has three soft modes that are simply translations
along the three coordinate axes. If the block is enclosed in a
rigid container, translation is no longer a soft mode. How-
ever, one may recover the lowest-frequency, fundamental
modes by making a smooth, sinusoidal distortion of the
original soft modes. We follow an analogous procedure to
find the fundamental modes of our isostatic system. First we
identify the soft modes associated with the boundary con-
straints by removing these constraints. Next we find a
smooth, sinusoidal distortion of these modes that allows us
to restore these constraints.

For concreteness we consider the three-dimensional cubi-
cal N-particle system S of Ref. �8� with periodic boundary
conditions at the jamming threshold. We label the axes of the
cube by x ,y, and z. S is isostatic, so that the removal of n
contacts allows exactly n displacement modes with no restor-
ing force. Consider, for example, the system S� built from S
by removing the q�L2 contacts crossing an arbitrary plane

FIG. 2. Illustration of the boundary contact removal process
described in the text. 18 particles are confined in a square box of
side L periodically which is continued horizontally and vertically.
An isostatic packing requires 33 contacts in this two-dimensional
system. An arbitrarily drawn vertical line divides the system. A
contact is removed wherever the line separates the contact from the
center of a particle. 28 small triangles mark the intact contacts;
removed contacts are shown by the five white circles.

FIG. 3. One soft mode in two dimensions for N�1000 particles.
Each particle is represented by a dot. The relative displacement of
the soft mode is represented by a line segment extending from the
dot. The mode was created from a previously prepared isostatic
configuration, periodic in both directions, following �8�. 20 contacts
along the vertical edges were then removed and the soft modes
determined. The mode pictured is an arbitrary linear combination of
these modes.
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orthogonal to �ox�; by convention at x=0, see Fig. 2. S�,
which has a free boundary condition instead of periodic ones
along �ox�, contains a space of soft modes of dimension q
�25�, instead of one such mode—the translation of the whole
system—in a normal solid. As stated above, we suppose that
a subspace of dimension q��L2 of these soft modes contains
only extended modes. We define the extension of a mode
relative to the cut hyperplane in terms of the amplitudes of
the mode at distance x from this hyperplane. Specifically the
extension e of a normalized mode 
�R� is defined by
�isin2�xi
 /L��i 
�R�2=e, where the notation �i 
�R� indicates
the displacement of the particle i of the mode considered. For
example, a uniform mode with �i 
�R� constant for all sites
has e= 1

2 independent of L. On the other hand, if �i 
�R�=0
except for a site i adjacent to the cut hyperplane, xi /L�L−1

and e�L−2. We define the subspace of extended modes by
setting a fixed threshold of extension e0 of order 1 and thus
including only soft modes � for which e��e0. As we dis-
cussed in the last section, we expect that a fixed fraction of
the soft modes remain extended as the system becomes large.
Thus if q� is the dimension of the extended modes vector
space, we shall suppose that q� /q remains finite as L→�.
The Appendix presents our numerical evidence for this be-
havior.

We now use the vector space of dimension q��L2 of
extended soft modes of S� to build q� orthonormal trial
modes of S of frequency of the order 1 /L. Let us define

�R�� to be a normalized basis of this space, 1���q�.
These modes are not soft in the jammed system S since they
deform the previous q contacts located near x=0. Neverthe-
less, a set of trial modes 
�R�

*� can still be formed by altering
the soft modes so that they do not have an appreciable am-
plitude at the boundary where the contacts were severed. We
seek to alter the soft mode to minimize the distortion at the
severed contacts while minimizing the distortion elsewhere.
Accordingly, for each soft mode � we define the correspond-
ing trial-mode displacement �i 
�R*� to be

�i
�R�
*� � C� sin	 xi


L

�i
�R�� , �11�

where the constants C� are introduced to normalize the
modes. C� depends on the spatial distribution of mode �. If,
for example, a highly localized mode has �i 
�R�=0 except
for a site i adjacent to the cut plane, C� grows without bound
as L→�. In the case of extended modes C�

−2

���ij�sin2�xi
 /L��j 
�R��2=e��e0, and therefore C� is
bounded above by e0

−1/2. The sine factor suppresses the prob-
lematic gaps and overlaps at the q contacts near x=0 and x
=L. The unit basis 
�R�� can always be chosen such that the

�R�

*� are orthogonal, simply because the modulation by a
sine that relates the two sets is an invertible linear mapping
in the subspace of extended modes. Furthermore, one readily
verifies that the energy of each 
�R�

*� is small, and that the
sine modulation generates an energy of order 1 /L2 as ex-
pected. Indeed we have from Eq. �8�

�E = C�
2�

�ij�
�	sin	 xi


L

�i
�R�� − sin	 xj


L

�j
�R��
 · n� ij�2

.

�12�

Using Eq. �10�, and expanding the sine, one obtains

�E � C�
2�

�ij�
cos2	 xi


L


2

L2 �n� ij · e�x�2��j
�R�� · n� ij�2 �13�

�e0
−1�
/L�2�

�ij�
�j
�R��2, �14�

where e�x is the unit vector along �ox�, and where we used

cos
�1. The sum on the contacts can be written as a sum on
all the particles since only one index is present in each term.
Using the normalization of the mode � and the fact that the
coordination number of a sphere is bounded by a constant
zmax �zmax=12 for three-dimensional spheres �26��, one ob-
tains

�E � e0
−1�
/L�2zmax � �L

2 . �15�

We have found on the order of L2 the trial orthonormal
modes of frequency bounded by �L�1/L, and we can apply
the variational argument mentioned above: the average den-
sity of states is bounded below by a constant below frequen-
cies of the order �L. In what follows, the trial modes intro-
duced in Eq. �11�, which are the soft modes modulated by a
sine wave, shall be called “anomalous modes.”

To conclude, one may ask if this variational argument can
be improved, for example, by considering geometries of bro-
ken contacts different from the hyperplane surfaces we have
considered so far. When contacts are cut to create a vector
space of extended soft modes, the soft modes must be modu-
lated with a function that vanishes where the contacts are
broken in order to obtain trial modes of low energy. On the
one hand, cutting many contacts increases the number of trial
modes. On the other hand, if too many contacts are broken,
the modulating function must have many “nodes” where it
vanishes. Consequently this function displays larger gradi-
ents and the energies of the trial modes increase. Cutting a
surface �or many surfaces, as we shall discuss below� is the
best compromise between these two opposite effects. Thus
our argument gives a natural limit to the number of low-
frequency states to be expected.

3. Extension to a wider range of frequencies

We may extend this argument to show that the bound on
the average density of states extends to higher frequencies. If
the cubic simulation box were now divided into m3 subcubes
of size L /m, each subcube must have a density of states
equal to the same D��� as was derived above, but extending
to frequencies on order of m�L. These subsystem modes
must be present in the full system as well, therefore the
bound on D��� extends to �0,m�L�. We thus prove that the
same bound on the average density of states holds down to
sizes of the order of a few particles, corresponding to fre-
quencies independent of L. We note that in d dimensions this
argument may be repeated to yield a total number of modes
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Ld−1 below a frequency �L�1/L, thus yielding a limiting
nonzero density of states in any dimension.

We note that the trial modes of energy �E� l−1 that we
introduce by cutting the full system into subsystems of size l
are, by construction, localized to a distance scale l. Never-
theless we expect that these trial modes will hybridize with
the trial modes of other, neighboring, subsystems; the corre-
sponding normal modes will, therefore, not be localized to
such short length scales.

B. State with �z�0

When the system is compressed and moves away from the
jamming transition, the simulations show that the extra coor-
dination number �z�z−zc increases. In the simulation, the
compression also increases the force at all contacts. How-
ever, in this section we will ignore these forces and focus our
attention only on the contact network created by the com-
pression. Any tension or compression in the contacts is re-
moved. The effect on the energy is to remove the first brack-
eted term in Eq. �6� above. We note that removing these
forces, which must add to zero on each particle, does not
disturb the equilibrium of the particles or create displace-
ments. In this section we ignore the question of how �z de-
pends on the degree of compression. We will return to this
question in the next section.

Compression causes �Nc=N�z /2�Ld�z extra constraints
to appear in Eq. �8�. Cutting the boundaries of the system, as
we did above, relaxes q�Ld−1 constraints. For a large sys-
tem, Ld�z�Ld−1 and thus q��Nc. Thus Eq. �8� is still over-
constrained and there will be no soft modes in the system.
However, as the systems become smaller, the excess number
of constraints, �Nc, diminishes; for L smaller than some l*

��z−1 , q becomes larger than �Nc the system is again
under-constrained as was already noticed in �18�. This allows
one to build low-frequency modes in subsystems smaller
than l*. These modes appear above a cut-off frequency �*

� l*−1; they are the “anomalous modes” that contribute to the
flat plateau in D��� above �*. In other words, anomalous
modes with characteristic length smaller than l* are not af-
fected very much by the extra contacts, and the density of
states is unperturbed above a frequency �*��z. This scaling
is checked numerically in Fig. 4. This prediction is in very
good agreement with the data up to �z�2.

At frequencies lower than �* we expect the system to
behave as a disordered, but not poorly connected, elastic me-

dium. We expect that the vibrational modes will be similar to
the plane waves of a continuous elastic body. We refer to
these modes as “acoustic modes.” Thus we expect D��� at
small � to vary as �d−1c−d, where c��z� is the sound speed at
the given compression. This c may be inferred from the bulk
and shear moduli measured in the simulations �15,8,11�; one
finds the transverse velocity ct���z�1/2, and the longitudinal
velocity cl��z0 in both three and two dimensions. Thus at
low frequency D��� is dominated by the transverse acoustic
modes and at �=�* the acoustic density of states is
�d−1ct

−d��zd−1�z−d/2��zd/2−1. For a three-dimensional sys-
tem the acoustic density of states should be dramatically
smaller than the plateau density of states. Since there is no
smooth connection between the two regimes we expect a
sharp dropoff in D��� for ���*. Such a dropoff is indeed
observed, as seen for a three-dimensional system in Fig. 5. In
fact, because of the finite size of the simulation, no acoustic
modes are apparent at ���* near the transition.

The behavior of such systems near the jamming threshold
thus depends on the frequency � at which they are observed.
For ���* the system behaves as an isostatic system, and for
���* it behaves as a continuous elastic medium. Since the
transverse and the longitudinal velocities do not scale in the
same way, the presence of a unique crossover in frequency
leads to the appearance of two distinct length scales ll and lt,
defined as ll�cl�

*−1 and lt�ct�
*−1. These lengths corre-

spond, respectively, to the wavelengths of the longitudinal
and transverse acoustic modes at �*. Note that since cl
��z0, one has ll� l*. Interestingly, lt��z−1/2 is the smallest
system size for which acoustic modes exist. For smaller sys-
tem sizes, the lowest frequency mode is not a plane wave,
but is an anomalous mode. lt can be observed numerically by
considering the peak of the transverse structure factor at �*

�12�.
Our argument ignores the spatial fluctuations of �z. If

these fluctuations were spatially uncorrelated they would be
Gaussian upon coarse graining: then the extra number of
contacts �Nc in a subregion of size L would have fluctua-

FIG. 4. Scaling of �* with the excess coordination number �z in
the system with relaxed springs. The line has a slope one.

FIG. 5. Log-linear plot of the density of states for a three-
dimensional system with N=1024 for three values of �−�c in the
soft-sphere system �dotted line� and the system where the applied
stress term has been removed �solid line�.
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tions of order Ld/2. The scaling of the contact number that
appears in our description is �Nc�Ld−1 and is therefore
larger than these Gaussian fluctuations for d�2. In other
terms at the length scale l*, where soft modes appear, the
fluctuations in the number of contacts inside the bulk are
negligible in comparison with the number of contacts at the
surface. Therefore the anomalous modes are not sensitive to
fluctuations in coordination numbers in three dimensions
near the transition. In Sec. V we will argue that there are
spatial anticorrelations in z, so that fluctuations also do not
affect the extended soft modes in two dimensions.

Note that these arguments do not preclude the existence of
low-frequency localized modes that may appear in regions of
small size l� l*, and that could be induced by very weak
local coordination or specific arrangements of the particles.
The presence of such modes would increase the density of
states at low frequency. There is no evidence of their pres-
ence in the simulations of �8�.

IV. EFFECTS OF THE APPLIED STRESS ON
VIBRATIONAL MODES

In this section we describe how the above simple descrip-
tion of D��� is affected by the presence of an applied stress.
In general, when a system of particles at equilibrium is
formed, there are forces between interacting particles. For
harmonic soft spheres it leads to a nonvanishing first term in

Eq. �6� 1
4��ij��rij

eq−1����R� j −�R� i���2, where we used rij �1.
This term is �a� negative for repulsive particles, �b� propor-
tional to the transverse relative displacement between par-
ticles in contact, and �c� scales linearly with the pressure p,
and therefore vanishes at the jamming transition. The full
dynamical matrix D can be written

D = M + M�, �16�

where M� is written in tensorial notation in the footnote
�27�. The spectrum of D has it a priori no simple relation
with the spectrum of M. Because M� is much smaller than
M near the transition, one can successfully use perturbation
theory for the bulk part of the normal modes of M. How-
ever, perturbation theory fails at very low frequency, which
is of most interest to us here. In this region the spectrum of
M contains the acoustic modes and the anomalous modes
forming the plateau. In what follows we estimate the change
of frequency induced by the applied stress on these modes.
We show that the relative correction to the plane-wave fre-
quencies is very small, whereas the frequency of the anoma-
lous modes can be changed considerably. Finally we show
that these considerations lead to a correction to the Maxwell
rigidity criterion.

A. Applied stress and acoustic modes

Consider a plane wave of wave vector k. As the directions
n� ij are random, both the relative longitudinal and transverse
displacements of this plane wave are of the same order:

���R� i−�R� j���2����R� i−�R� j� ·n� ij�2�k2. Consequently the
relative correction �E /E induced by the applied stress term
is very small:

�E

E
�

1
2 �

�ij�
�rij

eq − 1����R� j − �R� i���2

�
�ij�

���R� j − �R� i� · n� ij�2
�17�

since rij
eq−1 is proportional to the pressure p, while the other

factors remain constant as p→0,�E /E� p, and is thus arbi-
trarily small near the jamming threshold �28�.

B. Applied stress and anomalous modes

For anomalous modes the situation is very different: we
expect the transverse relative displacements to be much
larger than the longitudinal ones. Indeed soft modes were
built by imposing zero longitudinal terms, but there were no
constraints on the transverse ones. These are the degrees of
freedom that generate the large number of soft modes. The
most simple assumption is that the relative transverse dis-
placements are of the order of the displacements themselves,

that is ��ij����R� j −�R� i���2��i�R� i
2=1 for the anomalous

modes that appear above �*. This estimate can be checked
numerically for an isostatic system where this sum is com-
puted for all �. The sum of the transverse relative displace-
ments converges to a constant when �→0 as assumed, see
Fig. 6.

Finally we can estimate the scaling of the correction in the
energy �E induced by the stress term on the anomalous
modes:

�E � − �
�ij�

�1 − rij
eq����R� j − �R� i���2 � − p �18�

which is an absolute correction, and which can be non-
negligible in comparison with the energy E.

C. Onset of the anomalous modes

We can now estimate the lowest frequency of the anoma-
lous modes. The modes that appear at �* in the relaxed-
spring system have an energy lowered by an amount on the
order of −p in comparison to the original system. Applying
the variational theorem of the last section to the collection of
slow modes near �*, one finds that there must be slow nor-
mal modes with a lower energy. That is, the energy �AM

2 at
which anomalous modes appear satisfies

FIG. 6. Sum of the transverse terms �full curve� 	= 1
2��ij����R� j

−�R� i���2 and longitudinal terms �dotted curve� 	= 1
2��ij����R� j

−�R� i� ·n� ij�2 for each mode of frequency � at the jamming threshold
in three dimensions. The longitudinal term is equal to the energy of
the modes and vanish quadratically at 0 frequency. The transverse
term converges toward a constant different from 0.
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�AM
2 � �*2 − A2p � A1�z2 − A2p , �19�

where A1 and A2 are two positive constants. Thus coordina-
tion and stress determine the onset of the excess modes.

D. Extended Maxwell criterion for the contact number
under stress

From this estimate we can readily obtain a relation be-
tween the coordination and pressure that guarantees the sta-
bility of a system. There should be no negative frequencies
in a stable system, therefore �AM �0. Thus in an harmonic
system the right-hand side of Eq. �19� must be positive:

�z � C0p1/2 � �zmin, �20�

where C0 is a constant. This inequality, which must hold for
any spatial dimension, indicates how a system must be con-
nected to counterbalance the destabilizing effect of the pres-
sure. A phase diagram of rigidity is represented in Fig. 7.
When p=0, the minimal coordination zc corresponds to the
isostatic state: this is the Maxwell criterion. As we said, for
spherical particles zc=2d. When friction is present, one finds
zc=d+1. When p�0, Eq. �20� delimits the region of rigid
systems: granular matter, emulsions lie above this line. As
was shown by Alexander �17�, when p�0, even systems
with many fewer contacts than required by the Maxwell cri-
terion are rigid. These systems contain many soft modes as
defined in Eq. �10�, but they are all stabilized by the positive
bracketed term of Eq. �6�. This is the case, for example, in a
gel where polymers are stretched by the osmotic pressure of
the solvent. Thus the network of reticulated polymers carries
a negative pressure, which rigidifies the system and leads to
a nonvanishing shear modulus. Note that a similar phase dia-
gram, with the same singularity of �z but a different zc, was
obtained by a mean field approach �29�.

The relation �20� is verified in the simulations of �8�
where �z� p1/2: the numerical results are in agreement with
an equality of Eq. �20�. Furthermore it appears in Fig. 5 that
�*��AM. In other words, the two opposite effects of pres-
sure on the vibrations, that is �i� the increase in the coordi-
nation and �ii� the addition of a negative term in the energy
expansion, compensate �30�. In the discussion section we
justify why the system of �2� is thus marginally stable even
above the transition when p�0, and we furnish examples of
dynamics that lead to such features.

V. DISCUSSION

A. Stronger constraints on �z

The simulations of �2� show �z� p1/2, thus potentially
saturating the bound of Eq. �20�, so that there are excess
modes extending to frequencies much lower than �*. Here
we furnish an example of dynamics that lead to such a situ-
ation. Consider an initial condition where forces are balanced
on every particle, but such that the inequality �20� is not
satisfied. Consequently, this system is not stable: infinitesi-
mal fluctuations make the system relax with the collapse of
unstable modes. Such dynamics were described by Alex-
ander in �17� as structural buckling events: these events are
induced by a positive stress as occurs in the buckling of a
rod; but here they take place in the bulk of an amorphous
solid. These events a priori create both new contacts and
decrease the pressure. When the bound of �20� is reached,
there are no more unstable modes. If the temperature is zero,
the dynamics stop. Consequently one obtains a system where
Eq. �20� is an equality. Therefore �i� this system is weakly
connected and �ii� �AM �0, so that there are anomalous
modes very different from acoustic modes extending to zero
frequency. A similar argument is present in �24�.

In the simulations of Ref. �8� the relaxation proceeds in
the following way. The system is initially in equilibrium at a
high temperature. Then it is quenched instantaneously to
zero temperature. At short time scales the dynamics that fol-
lows is dominated by the relaxation of the stable, high fre-
quency modes. The main effect is to restore approximately
force balance on every particle. At this point, if the inequal-
ity �20� is satisfied, then the dynamics stop. However, if it is
not satisfied then we are in the situation of buckling as de-
scribed above. The pressure and coordination number con-
tinue to change until the last unstable mode has been stabi-
lized. At this point the bound of Eq. �20� is marginally
satisfied, and there is no driving force for further relaxation.

The data of �2� were obtained by gradually decreasing the
pressure from this initial state of zero temperature and non-
zero pressure. The reduction of pressure causes some con-
tacts to open. The opening of these contacts tends to desta-
bilize normal modes and reduce their frequencies, while the
reduction in pressure tends to stabilize them. If the particles
simply spread apart affinely, the destabilizing effect would
be expected to dominate �32�. Thus we argue that some in-
cremental buckling must occur as in the initial temperature
quench. The buckling increases the contact number and de-
creases the pressure until marginal stability is achieved, so
that the inequality of Eq. �20� is marginally satisfied as the
pressure decreases.

It is interesting to discuss further which systems, and
which procedures, can have marginal stable states. In repul-
sive short-range systems, we expect the situation of marginal
stability that follows an infinite cooling rate to take place for
a domain of the parameters of initial conditions �� ,T�, lo-
cated at high temperature and low density. This domain
might stop at a finite � even when the temperature is infinite.
This is true for particles interacting with a Gaussian poten-
tial, as was shown in simulations and theoretical analysis on
Euclidian random matrices �33�. There most of the unstable
modes vanish at a finite � despite T=�.

FIG. 7. Phase diagram of rigidity in terms of the coordination
number and pressure. When p�0, the line separating the stable and
unstable regions is defined by Eq. �20�. When the pressure is nega-
tive, any connected system can be rigid.
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When the cooling rate is finite we expect that the relax-
ation does not stop when all the modes are stable. For ex-
ample activated events can, in principle, lead to the collapse
of anomalous modes. These events a priori increase the con-
nectivity and decrease the pressure further than the bound of
Eq. �20�, leading to �AM �0. Interestingly hyperquenched
mineral glasses show a much larger number of excess modes
�34� in comparison with normally cooled glasses, whereas
annealed polymeric glasses show a diminished excess of
such modes �35�.

B. Fluctuation of connectivity

In Sec. III we argued that although fluctuations were neg-
ligible in three dimensions near the transition, they might
have effects in two dimensions. Here we address these pos-
sible effects. In other systems such as ferromagnets the spa-
tial fluctuations of, e.g., magnetic coupling, lead to notice-
able and sometimes striking effects �36�. It is natural to ask
what analogous effects might be induced by fluctuations of
contact number z in the system of �8� in two dimensions. In
a system with uncorrelated contacts in two dimensions, the
modes in the weakly connected regions would be softer than
those in the more strongly connected regions. This would be
expected to create modes with frequencies below the nomi-
nal �* in the system of relaxed springs of Sec. III, and would
imply the presence of modes below the bound �AM in the
original system. We argue that in the simulations of �8� such
fluctuations are negligible. It is important to note that z is not
an uncorrelated random variable like the magnetic coupling
mentioned above. For example, if z were an uncorrelated
random variable, one would expect that the fluctuations in
the total number of contacts Nz would be of order �N. How-
ever, at the jamming threshold the system is isostatic and the
number of contacts is precisely 2dN; there are no fluctua-
tions. More generally, the bound on �z in the last section
applies not merely on average but rigorously to any subre-
gion of a size larger than l*, since all subregions experience
the same pressure p. Furthermore for a marginally stable
system such as those of �8�, the average �z is given by the
bound of Eq. �20�. These two facts imply that the fluctuations
of contact numbers are small. Therefore the conclusions of
the last section remain valid, and no anomalous modes below
the bound �* are expected in the relaxed-spring system due
to fluctuations of z.

C. Extension to nonharmonic contacts

In the previous sections we considered harmonic interac-
tions. Here we discuss the generalization of our argument to
other potentials. Reference �8� explored several other inter-
actions, notably the Hertzian interaction potential describing
the compressive energy of two elastic spheres. It corresponds
to 
= 5

2 in Eq. �5�. Reference �8� observed a plateau in the
density of states whose height D0 scales as p−1/6. They also
observed a cutoff frequency �* varying as p1/2. In the Herz-
tian case the quadratic energy of Eq. �7� becomes

�E =
1

2�
�ij�

�1 − rij�1/2���R� j − �R� i� · n� ij�2. �21�

The new factor �1−rij�1/2 amounts to a spring constant kij

that depends on compression. The contact force f ij

=��E /�rij evidently varies as �1−rij�3/2. In what follows we
neglect the fluctuations that exist between the contacts. This
treatment is sufficient to recover the scaling results of �8�.

The new factor �1−rij�1/2 rescales the energy. To account
for this overall effect, we replace �1−rij�1/2 by its average
��1−rij�1/2�. Expressed in terms of contact forces, this factor
is proportional to �f ij

1/3�. Replacing f ij by its average, the
factor becomes �f ij�1/3. This average is related to the pressure
p, via p��f ij�. Thus, in this approximation the overall effect
is to rescale the energy by a factor k�p�� p1/3.

�E =
k�p�

2 �
�ij�

���R� j − �R� i� · �n� ij�2. �22�

Apart from this prefactor, the energy and the dynamical
matrix are identical to the harmonic case treated above. Each
normal mode frequency gains a factor k1/2� p1/6. In the har-
monic case the crossover frequency follows �*��z. In the
Hertzian case, it gains the same factor k1/2, so that �*

�k1/2�z. The bound on the lowest-frequency anomalous
modes �AM still has the form

�AM
2 � �*2 − A2p . �23�

For a marginally stable system we still have �AM =0, which
leads to an unaltered relationship between �* and p :�*

� p1/2. Comparing with our previous estimate of �* we find
�z� p1/3. Furthermore, the plateau density of states D0 has
the dimension of an inverse frequency and thus gains a factor
p−1/6. Since the harmonic D0 had no dependence on p, the
Hertzian D0�p� also should vary as p−1/6. The scaling behav-
iors seen in �8� agree with these expectations. These argu-
ments may be applied to general values of the interaction
exponent 
.

Additional effects could, in principle, alter the low-
frequency modes in the Hertzian case. When harmonic
springs are replaced by Hertzian ones, different contacts
have different stiffness. This effect should be quantified in
order to gain a more detailed understanding of the Hertzian
case �37�.

VI. CONCLUSIONS

In this paper we computed some of the vibrational prop-
erties of weakly connected amorphous systems. Above a fre-
quency scale �* such systems do not behave as continuous
elastic media. In this regime the vibrations correspond to the
anomalous modes that constitute the vibrations of marginally
stable, isostatic systems. At frequencies lower than �*, the
system acts as a continuous solid, with low-frequency acous-
tic modes. As we showed in Sec. III, these anomalous modes
are built from the soft modes that appear in subsystems with
free-boundary conditions. At �* the anomalous modes are
characterized by a length scale l*. Interestingly l* does not
appear directly in the correlation functions of the static struc-
ture, but only in the response functions. l* can be much
larger than the particle size and varies with the coordination
number, as l*��*−1��z−1. Secondly we computed the ef-
fect of applied stress on these anomalous modes. In a repul-
sive system the stress has a strong effect that lowers the
frequency of the anomalous modes. Imposing that such
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modes are stable leads to a generalization of the Maxwell
criterion: the coordination must increase nonanalytically
with pressure to compensate for the destabilizing effect of
compression. Finally, we discussed the “structural buckling”
that occurs when anomalous modes collapse. We use this
concept to justify the marginal stability that follows hyper-
quenches in the simulations of repulsive, short-range systems
of �8�.

The anomalous modes offer a new approach for under-
standing response and transport in weakly connected me-
chanical systems. Knowledge of the statistical properties of
the anomalous and soft modes defined by Eq. �10� is neces-
sary for predicting the acoustic and thermal transport of, e.g.,
the simulated system of �8�. These modes also provide an
alternative view of relaxation, via buckling of compressed
anomalous modes. This buckling picture provides an intrigu-
ing contrast to the local cage-escape picture commonly used
to describe these relaxations. This approach may be more
broadly applicable for explaining the presence of excess
modes in some crystals �38� and in glasses �37�. Glasses
exhibit a large excess of low-frequency modes like our mar-
ginally jammed system; this suggests that they behave like
weakly connected mechanical systems at short length scales.
This resemblance raises the hope that our approach may ex-
plain anomalous phenomena in the transport, response, relax-
ation, and aging of structural glasses.
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APPENDIX: SPATIAL DISTRIBUTION OF THE SOFT
MODES

In our argument we have assumed that when q�Ld−1 con-
tacts were cut along a hyperplane in an isostatic system,
there was a vector space of dimension q�=aq which contains
only extended modes, and that a does not vanish when L
→�. A normalized mode 
�R� was said to be extended if
�isin2�xi
 /L��i 
�R�2�e0, where e0 is a constant, and does
not depend on L. Here we show how to chose e0�0 so that
there is a nonvanishing fraction of extended soft modes. We
build the vector space of extended soft modes and furnish a
bound to its dimension.

Let us consider the linear mapping G which assigns us to
a displacement field 
�R�, the displacement field �i 
G�R�
=sin2�xi
 / L̇��R� i. For any soft mode 
�R�� one can consider

the positive number a����R�
G
�R����isin2�xi
 /L��R� i,�
2 .

We build the vector space of extended modes by recurrence:
at each step we compute the a� for the normalized soft
modes, and we eliminate the soft mode with the minimum
a�. We then repeat this procedure in the vector space or-
thogonal to the soft modes eliminated. We stop the procedure

when a��e0 for all the soft modes � left. Then all the modes
left are extended according to our definition. We just have to
show that one can choose e0�0 such that when this proce-
dure stops, there are q� modes left, with q��aq, with a�0.
In order to show that, we introduce the following overlap
function:

f�x�dx � q−1 �
�=1,…,q

�
xi��x,x+dx�

��R� i,��2. �A1�

The sum is taken on an orthonormal basis of soft modes �
and on all the particles whose position has a coordinate xi
� �x ,x+dx�. f�x� is the trace of a projection, and is therefore
independent of the orthonormal basis considered. f�x� de-
scribes the spatial distribution of the amplitude of the soft
modes. The 
�R�� are normalized and therefore

�
0

L

f�x�dx = 1 �A2�

We have examined soft modes made from configurations
at the jamming transition found numerically in �8�. The over-
lap function f�x� was then computed for different system
sizes L. These are shown in Fig. 8. It appears from Fig. 8 that
�i� when f�x� is rescaled with the system size it collapses to
a unique curve, and �ii� this curve is bounded below by a
constant c �c�0.6�. Consequently one can bound the trace
of G : trG=�0

Lqf�x�sin2�x��qc /2. On the other hand, one has
trG=��=1

q a�, where the sum is made on the orthonormal ba-
sis we just built in the previous paragraph. This sum can be
divided into contributions from the nonextended states and
extended states:

�
�=1

q

a� = �
�=1

q−q�

a� + �
�=q−q�+1

q

a�. �A3�

By construction all the a� in the first sum are smaller than e0,
while all the a� in the �first or� second are smaller than 1.
Thus ��=1

q 
�� �q−q��e0+q�. Combining, we have �q
−q��e0+q��qc /2, or

q� � q�c/2 − e0�/�1 − e0� . �A4�

Evidently for all L , q� remains a nonvanishing fraction of
q for any fixed threshold e0 such that e0�c /2, as claimed.

FIG. 8. The overlap function f�x� as defined in Eq. �A1� for
different system sizes in three dimensions. Soft modes were created
from isostatic configurations as described in Fig. 3.
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